Runs CHORD given SNV and SV VCF files. NOTE: make sure you have the BSgenome.Hsapiens.UCSC.hgXX installed.
Usage
chord_run(
vcf.snv = NULL,
vcf.sv = NULL,
df.sv = NULL,
sample.name = NULL,
ref.genome = "hg38",
sv.caller = "manta",
outpath = NULL,
...
)
Arguments
- vcf.snv
Path to VCF containing SNVs and INDELs.
- vcf.sv
Path to VCF containing SVs.
- df.sv
A data.frame object containing the columns 'SVTYPE' and 'SVLEN' from a Manta SV VCF.
- sample.name
Name of sample to use.
- ref.genome
Human genome assembly. One of 'hg38' (default), 'hg19' or 'GRCh37'.
- sv.caller
manta (default) or gridss.
- outpath
File to write CHORD predictions to on disk (should end in '.gz'). If not specified, results won't be written to disk.
- ...
Other arguments to be passed to https://github.com/UMCUGenetics/CHORD/blob/d7c963/R/extractSigsChord.R.
Examples
snv <- system.file("extdata/umccrise/snv/somatic-ensemble-PASS.vcf.gz", package = "gpgr")
sv <- system.file("extdata/umccrise/sv/manta.vcf.gz", package = "gpgr")
chord_res <- chord_run(
vcf.snv = snv, df.sv = chord_mantavcf2df(sv),
sample.name = "foo"
)
#> Warning:
#> No reference genome loaded. Please install and load a BSgenome.
#> For example:
#> install.packages('BiocManager')
#> BiocManager::install('BSgenome.Hsapiens.UCSC.hg19')
#> library('BSgenome.Hsapiens.UCSC.hg19')
#>
#> Then specify the BSgenome to the ref.genome arguemnts to the relevant functions.
#> For example:
#> extractSigsSnv(..., ref.genome=BSgenome.Hsapiens.UCSC.hg19)
#> Loading required package: BiocGenerics
#>
#> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:stats’:
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’:
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
#> tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#> Loading required package: stats4
#>
#> Attaching package: ‘S4Vectors’
#> The following objects are masked from ‘package:base’:
#>
#> I, expand.grid, unname
#>
#>
#>
# chord_res2 <- chord_run(vcf.snv = snv, vcf.sv = sv, sample.name = "foo",
# outpath = "nogit/chord_results.json.gz")